
Exploring the Impact of Tokenization Strategies on
Machine Translation using Transformer Seq2Seq

Architecture - Research Design

Filippo Merlo1

1 CIMEC, University of Trento
filippo.merlo@studenti.unitn.it

April 30, 2025

1 Intoduction
How does the choice of tokenization strategy affect the performance of a Transformer-based
Seq2Seq architecture in machine translation tasks?

In the last years, the field of natural language processing (NLP) has undergone a big transfor-
mation, largely driven by the advent of Transformer architectures. Introduced in the seminal pa-
per "Attention is All You Need," [8] Transformers have revolutionized NLP tasks by leveraging
self-attention mechanisms that effectively capture long-range dependencies in text sequences.
Unlike their predecessors, such as recurrent neural networks (RNNs) and convolutional neural
networks (CNNs), Transformers process sequences in parallel, resulting in significant improve-
ments in both efficiency and performance.

One of the most critical applications of NLP is machine translation, where models convert
text from one language to another. The introduction of sequence-to-sequence (Seq2Seq) mod-
els with encoder-decoder architectures, first popularized in the paper "Sequence to Sequence
Learning with Neural Networks," [7] laid the groundwork for modern neural machine transla-
tion (NMT). While these early models used RNNs or LSTMs, their performance was limited
by the sequential processing of tokens and the difficulty in handling long input sequences. The
subsequent introduction of the attention mechanism, as described in "Neural Machine Transla-
tion by Joint Learning to Align and Translate," [2] marked a significant breakthrough, allowing
models to dynamically focus on different parts of the input sentence and thereby improving
translation accuracy.

Transformers, by eliminating the sequential processing constraints, have further advanced
NMT, enabling more efficient training and the ability to scale to larger datasets. However, the
performance of these models is highly sensitive to the choice of tokenization strategy, which
breaks down text into manageable subunits (tokens). Tokenization directly affects the input
representation that the model learns from, influencing the model’s ability to capture linguistic
nuances and, consequently, its translation quality.

This project hypothesizes that different tokenization strategies, such as word-level, subword-
level (e.g., WordPiece Tokenization [9], Byte-Pair Encoding [6]), and character-level tokeniza-
tion, will significantly impact the translation quality and overall performance of Transformer-
based Seq2Seq models, measured with the Bilingual evaluation understudy (BLEU) score [4].

1



Specifically, subword-level tokenization is expected to offer a balanced approach, optimizing
the trade-off between vocabulary size and model performance, and thereby yielding superior
translation results.

2 Data
To test our hypothesis I chose to use the CCMatrix dataset [5]. This dataset has been obtained
with a method for large-scale mining of parallel sentences from monolingual corpora using
margin-based bitext mining in a multilingual sentence space. The authors apply this technique
to a vast dataset of 32.7 billion unique sentences across 38 languages, using ten snapshots of a
curated Common Crawl corpus. By embedding sentences in a shared multilingual space with
the LASER toolkit (Language-Agnostic SEntence Representations) [1], the method identifies
semantically similar sentences across languages. The margin-based criterion, which compares
the similarity between sentence pairs against their nearest neighbours, allows for the effective
mining of parallel sentences. The margin between two candidate sentences x and y is defined
as the ratio between the cosine distance between the two sentence embeddings, and the average
cosine similarity of its nearest neighbours in both directions.

I used 203,000 English-Italian sentence pairs from the CCMatrix dataset, splitted in 200000
for training and 3000 for testing the translation quality, to investigate three different tokenization
methods: character-level, subword-level (using WordPiece tokenization [9]), and word-level.

Character-level tokenization consists of treating each character in the text as a separate to-
ken. So, for example, the word "hello" will be broken down into its individual letters: [’h’,
’e’, ’l’, ’l’, ’o’]. This approach can capture detailed information and embed any words not in
the vocabulary. The backlash is that it often leads to longer sequences, posing a challenge in
training the model.

Word-level tokenization treats each word in a sentence as an individual token. For example,
the sentence "I am programming" would be tokenized into [’I’, ’am’, ’programming’]. While
this method is straightforward to implement, it has some limitations. It struggles with out-of-
vocabulary (OOV) words, leading to potential inaccuracies, and can create an excessively large
vocabulary if the dataset used to build the tokenizer is extensive. This can make the model less
efficient and harder to manage.

WordPiece is a commonly used subword-level tokenization method in models such as BERT
[3]. The algorithm is designed to handle OOV words by breaking them down into smaller,
known subwords or characters. This approach allows the model to understand and process
words that were not seen during training, which is crucial for handling a wide range of vocab-
ulary in real-world text data. Decomposing words into more fundamental and shared pieces
allows for a decrease the vocabulary size. WordPiece begins with a small vocabulary that in-
cludes special tokens and an initial set of characters. Each word is initially split into subwords
using a prefix (e.g., "##" in BERT), so "word" becomes "w ##o ##r ##d". The model then
learns to merge subwords based on a calculated score, which prioritizes less frequent combina-
tions over more frequent ones 1.

The score for a subword pair is calculated as follows:

score =
freq_of_pair

freq_of_first_element× freq_of_second_element
(1)

By dividing the frequency of the pair by the product of the frequencies of each of its parts, the
algorithm prioritizes the merging of pairs where the individual parts are less frequent in the
vocabulary. This process continues until the vocabulary reaches the desired size.

2



3 Model
The model I used is a standard seq2seq transformer architecture shown in 1. This setup com-
prises two neural networks: an encoder transformer for processing the tokens of the initial
English sentence, and a decoder transformer for generating tokens of the Italian translated sen-
tence. Both the encoder and decoder have 1 layer each, 8 attention heads per layer, an input size
of s = 200 (the size of the embedding vector for each token in the sequence), and a hidden size
of d = 512. ReLU activation functions are used in the linear layers.

The encoder (left of Fig.1) processes the input sequence tokens. Initially, each token is
converted into one-hot encoding vectors of dimension s×vocab_size. Each of these vectors is
then individually processed and compressed to embeddings of the size s×d.

Once the words are embedded into vectors, positional encoding is introduced to specify
their absolute and relative positions in the sequence. This step is crucial because the position
in natural language can carry significant information. For instance, in the sentence “The cat
watches the dog run fast,” swapping “cat” and “dog” changes the subject and object, thereby
altering the sentence’s meaning. To encode this positional information, a method called Sinu-
soidal positional encoding is used. This method uses sine and cosine functions based on the
token positions and adds the result to the input vectors.

Following positional encoding is the self-attention mechanism. This process involves com-
paring each token in the input sequence to every other token to compute attention weights. High
attention weights between tokens suggest a syntactic or semantic relationship, indicating which
tokens the model should focus on.

The attention mechanism in transformers operates by distinguishing between three types
of input matrices: queries (Q), keys (K), and values (V). Each of these three matrices is s× d
dimension matrix representing the processed tokens of the input. The mechanism works by
comparing the queries (Q) with the keys (K) to evaluate their relevance or compatibility. This
comparison generates attention weights, which are then used to select corresponding values (V)
that have higher weights. The embedded Q and K tokens are multiplied using the dot product.
The result of the multiplication is scaled by dividing by

√
d. In this case, scaling helps reduce

the magnitude and ensure suitable inputs to the softmax function. Next, the scaled product is
fed into a softmax function, which outputs the attention weights. The returned attention weights
of all pairs of tokens are between 0 and 1 and sum up to 1. The computed attention weights are
then multiplied with the values V. Token pairs where Q and K are less compatible have lower
attention weights, closer to zero. Consequently, their values V are also reduced to vectors close
to zero. The model attends less to these values than to others with high attention scores.

This model uses a multi-head attention mechanism. In this case, the model repeats the atten-
tion mechanism explained above multiple times (h times) in parallel. Before passing the input
tokens of dimension d into these h attention blocks, they projected into smaller embeddings
of size d/h by using small linear neural networks. Each of the h linear networks has different
weights and leads to different projections. Consequently, each attention “head” can learn to
focus on different aspects. The outputs of the h heads are then concatenated and passed through
another linear neural network.

Finally, a standard feed-forward neural network processes the outputs of the multi-head
attention block by applying a series of linear transformations followed by non-linear activa-
tion functions, such as the rectified linear unit (ReLU). This enhances the model’s capacity to
model non-linear relationships between words within the sequence. The encoded tokens are
then passed to the decoder.

It’s important to note that the outputs from both the attention block and the feed-forward

3



network are added to their original inputs and normalized through residual connections, essen-
tial for preserving gradient flow during backpropagation, preventing the loss of gradients due to
their diminishing nature.

The decoder (right of Fig.1) in the architecture is similar to the encoder but operates on the
output sequence. It takes both the encoded input tokens and the output tokens produced so far
as input to generate new ones. Like the encoder, it embeds output tokens into vectors and uses
positional encoding and self-attention to process them.

The big difference is that the decoder includes a cross-attention block that compares the
output sequence tokens with the encoded input tokens. The decoder’s cross-attention module
uses the encoded input tokens as K and V and the produced output tokens as Q. This cross-
attention is crucial for generating the next output token by considering both the input and the
output sequence so far.

Finally, a linear layer and softmax activation produce probabilities for all possible tokens,
selecting the one with the highest probability as the next token. The process continues until an
end-of-sequence token is generated.

Figure 1: Transformer Architecture.

4 Training regime
The transformer is trained using the Adam optimizer to minimize the cross-entropy loss aver-
aged over tokens, with a batch size of 30 data point (english-italian sentence pairs). The training
last for 10 epochs, starting with a learning rate of 0.0001. A dropout rate of 0.1 is applied to the
input embeddings and transformers. No hyperparameter tuning is applied since the aim of the
study is to compare the change in performance among different tokenization strategies. All the
parameters are kept constant in the three different trainings to allow a more fair comparison.

4



References
[1] Mikel Artetxe and Holger Schwenk. Massively multilingual sentence embeddings for zero-

shot cross-lingual transfer and beyond. 7:597–610.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of deep bidirectional transformers for language understanding.

[4] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method for au-
tomatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting on
Association for Computational Linguistics - ACL ’02, page 311. Association for Computa-
tional Linguistics.

[5] Holger Schwenk, Guillaume Wenzek, Sergey Edunov, Edouard Grave, and Armand Joulin.
CCMatrix: Mining billions of high-quality parallel sentences on the WEB.

[6] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare
words with subword units.

[7] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks.

[8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

[9] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad Norouzi, Wolfgang
Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, Jeff Klingner, Apurva
Shah, Melvin Johnson, Xiaobing Liu, Łukasz Kaiser, Stephan Gouws, Yoshikiyo Kato,
Taku Kudo, Hideto Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Corrado, Macduff
Hughes, and Jeffrey Dean. Google’s neural machine translation system: Bridging the gap
between human and machine translation.

5


	Intoduction
	Data
	Model
	Training regime

