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1 Intoduction
Transformers have significantly improved Neural Machine Translation (NMT) by removing
the constraints of sequential processing, allowing for more efficient training and scalability to
larger datasets [1] [5]. However, the performance of these models is highly sensitive to the
tokenization strategy used, which breaks down text into tokens that the model can process.
Tokenization directly impacts the model’s input representation, influencing its ability to capture
linguistic nuances and, consequently, its translation quality.

This project investigates three tokenization methods: character-level, word-level, and subword-
level (using WordPiece tokenization). Character-level tokenization treats each character as a
separate token, which can capture detailed information and handle words not in the vocabu-
lary but often results in longer sequences, complicating model training. Word-level tokeniza-
tion treats each word as an individual token, simplifying implementation but struggling with
out-of-vocabulary (OOV) words and potentially leading to an excessively large and inefficient
vocabulary.

WordPiece tokenization [6], a subword-level approach used in models like BERT [2], ad-
dresses these issues by breaking down words into smaller, more manageable subwords or char-
acters. This method reduces the vocabulary size while effectively handling OOV words, en-
hancing the model’s ability to process real-world text data. The process starts with a small
vocabulary and iteratively merges subwords based on a calculated score that prioritizes less
frequent combinations, optimizing the model’s performance.

The project hypothesizes that different tokenization strategies will significantly impact the
translation quality and overall performance of Transformer-based Seq2Seq models, measured
using the Bilingual evaluation understudy (BLEU) score [3]. with subword-level tokenization
expected to offer a balanced approach, optimizing vocabulary size and translation results.

2 Data and model
To test our hypothesis, I utilized the CCMatrix dataset [4], which comprises 32.7 billion unique
sentences across 38 languages, mined using margin-based bitext mining with the LASER toolkit.
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Specifically, I selected 203,000 English-Italian sentence pairs, dividing them into 200,000 pairs
for training and 3,000 pairs for testing translation quality.

The model I used is a standard seq2seq transformer architecture. This setup comprises
two neural networks: an encoder transformer for processing the tokens of the initial English
sentence, and a decoder transformer for generating tokens of the Italian translated sentence.
Both the encoder and decoder have 1 layer each, 8 attention heads per layer, an input size of
s = 200 (the size of the embedding vector for each token in the sequence), and a hidden size
of d = 512. ReLU activation functions are used in the linear layers. Sinusoidal positional
encodings are added to the input embeddings.

3 Experimental setup
The experiment is organized into three main sections. First, I will describe the three different
methods used for preprocessing the sentences. Next, I will provide details about the training
process. Finally, I will explain the function used to evaluate the quality of the model’s transla-
tions.

3.1 Preprocessing
For each of the three tokenization methods, both the representation of sentences before being fed
into the model and the composition of the model’s vocabulary are altered. Before tokenization,
sentences are filtered based on their length; any sentence longer than 200 characters is excluded
from both the training and test sets. This is because the model’s input length is capped at 200,
and during character-level tokenization, it’s crucial to ensure sentences do not exceed this limit.

The first tokenization strategy I implemented is character-level tokenization. In this ap-
proach, the vocabulary is predefined and consists of all the letters of the alphabet, numbers,
punctuation marks, and three special tokens: the padding token ’<PADDING>’, the start-of-
sequence token ’<START>’, and the end-of-sequence token ’<END>’. The entire vocabulary
contains 87 tokens, as detailed in the appendix. Only with this approach, sentences undergo an
additional filtering step to remove any that contain OOV characters. With this strategy, each sen-
tence is converted character by character into the corresponding index based on the vocabulary.
After tokenization, the start, padding, and end-of-sequence tokens are added to the sequence.

The second tokenization strategy I employed is word-level tokenization. In this method,
each word in a sentence is treated as an individual token. Initially, a vocabulary is constructed
by compiling all unique words and punctuation marks from the dataset plus the same special
characters of the previous approach. This process results in the creation of two extensive vo-
cabularies, one for each language. There are respectively 59885 tokens for the English one and
81825 tokens for the Italian one.

The third tokenization strategy is WordPiece tokenization. This algorithm is designed to
handle out-of-vocabulary (OOV) words by breaking them down into smaller, known subwords
or characters, enabling the model to process words not encountered during training. By decom-
posing words into more fundamental and shared components, WordPiece reduces the overall
vocabulary size while maintaining linguistic diversity.

The process begins with a small vocabulary, including special tokens and an initial set of
characters. Each word is initially split into subwords using a prefix (e.g., "##"), so the word
"word" becomes "w ##o ##r ##d." The model then learns to merge subwords based on a cal-
culated score, which prioritizes less frequent combinations over more frequent ones. The score
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for a subword pair is determined by dividing the frequency of the pair by the product of the
frequencies of each of its parts:

score =
freq_of_pair

freq_of_first_element× freq_of_second_element

This calculation allows the algorithm to focus on merging pairs where the individual parts
are less common in the vocabulary. The process continues iteratively until the vocabulary
reaches the desired size. To build this tokenizer I followed the implementation provided by the
hugging face tutorial "Building a tokenizer, block by block" available at https://huggingface.
co/learn/nlp-course/en/chapter6/8?fw=pt. I set the vocabulary size to 10,000 tokens
for both English and Italian.

3.2 Training
The training has been the same for all three conditions. The transformer is trained using the
Adam optimizer to minimize the cross-entropy loss averaged over tokens, with a batch size
of 30 data points (english-italian sentence pairs). The training lasts for 10 epochs, starting
with a learning rate of 0.0001. A dropout rate of 0.1 is applied to the input embeddings and
transformers. No hyperparameter tuning is applied since the aim of the study is to compare
the change in performance among different tokenization strategies. All the parameters are kept
constant in the three different trainings to allow a more fair comparison.

3.3 Evaluation
The quality of the translation is evaluated with a classical measure for machine translation,
the Bilingual evaluation understudy (BLEU) score [3]. The BLEU score consists of a number
between zero and one that measures the similarity of the machine-translated text to a set of
reference translations. A value of 0 means that the machine-translated output has no overlap
with the reference translation (low quality) while a value of 1 means there is perfect overlap
with the reference translations (high quality). We computed the BLEU scores for the 3000
sentences of the test sed, dividing them into three groups according to their length. The first
group is made from sentences with less than 50 characters. The second of sentences with a
number of characters between 50 and 100, while the third one is made of sentences with more
than 100 characters. In this way, I want to see if there is an effect on the length of the sentence
in the final score.

4 Results
The results of the experiment are presented in Table 1. Overall, the scores are relatively
low. Character-level tokenization yielded the best performance, while word-level tokenization
performed the worst. WordPiece tokenization showed slightly better results than word-level,
though the difference between the two is not significant. The best performance has been ob-
tained for short sentences (less than 50 characters) by the character-level tokenization approach.

In the appendix, a sample of four pairs of translated sentences with their target sentences
are shown.
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Tokenization Level S. length <= 50 50 < S. length <=100 S. length > 100 Tot
Character 0.16250 0.11960 0.11572 0.13260

Word 0.00000 0.00000 0.0001 0.00000
WordPiece 0.00021 0.00041 0.00008 0.00047

Table 1: Tokenization levels and their corresponding BLEU scores divided by sentence length.

5 Discussion
The results obtained did not align with our initial hypotheses, which predicted that WordPiece-
level tokenization would outperform other approaches. Contrary to expectations, the character-
level tokenization demonstrated the best performance. Analyzing the translated samples reveals
that, in the other two tokenization conditions, the model failed to learn the translation task effec-
tively. However, in the character-level tokenization, there is evidence that the model developed
some understanding of the translation task.

This outcome could be attributed to the size of the vocabulary used. Given that the model
employed was relatively shallow, with only a single layer in both the encoder and decoder, the
character-level tokenization might have offered a more manageable and effective representation
for the model to process, leading to better performance.

As a next step, an interesting question to explore would be at what model size each tokeniza-
tion strategy begins to outperform the others. To investigate this, we plan to gradually scale up
the model size by increasing the number of layers in both the encoder and decoder, enhancing
the model’s capacity to learn complex patterns and relationships in the data. Additionally, we
will extend the training duration to give the model more time to converge on an optimal solu-
tion. By combining a larger model with longer training, we aim to improve performance across
different tokenization methods, potentially allowing the WordPiece-level tokenization to realize
its anticipated advantages.

6 Appendix
Due to the length of the code relative to this project and the fact it is distributed on multiple
files, I decided to share it through a GitHub repository that is available at https://github.
com/filippo-merlo/transformer_translate_en_it.git

The vocabulary used for the character-level tokenization:

[
’<START>’, ’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’,
"’", ’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
’–’,’—’,’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
’8’, ’9’, ’:’, ’<’, ’=’, ’>’, ’?’, ’@’, ’;’,
’[’, ’\\’, ’]’, ’^’, ’_’, ’‘’, ’‘’, ”’, ’“’, ’”’,
’...’, ’«’, ’»’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,
’h’, ’i’, ’l’, ’m’, ’n’, ’o’, ’p’, ’q’, ’r’, ’s’,
’t’, ’u’, ’v’, ’z’, ’j’, ’k’, ’w’, ’x’, ’y’,
’à’, ’é’, ’è’, ’ì’, ’ò’, ’ù’,
’{’, ’|’, ’}’, ’~’, ’<PADDING>’, ’<END>’

]

Here some examples of target and translated sentences are shown.
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Character level
Target sentence: leggi del tuo signore che è generosissimo.
Predicted sentence: leggi, per il tuo signore è il tuo generosi.
Target sentence: leggi, ché il tuo signore è il generosissimo,
Predicted sentence: leggi, e il tuo signore è il maggior parte della generosissimo,
Target sentence: e la parola di dio è certamente una di queste.
Predicted sentence: la preghiera del signore è sicuramente di questi.
Target sentence: “e noi (angeli) non discendiamo se non attraverso il comando del
vostro signore.”
Predicted sentence: e noi (angeli) non decenni) non aspettare la tua comanda del
tuo signore (muhammad saw).

Word level
Target sentence: leggi del tuo signore che è generosissimo.
Predicted sentence: un’honda assomiglianza assomiglianza disponi assomiglianza
d’istruzioni assomiglianza assomiglianza assomiglianza muori
assomiglianza assomiglianza assomiglianza confiscati assomiglianza
d’istruzioni assomiglianza

Target sentence: leggi, ché il tuo signore è il generosissimo,
Predicted sentence: riflettendoci assomiglianza assomiglianza mossa assomiglianza
buddhisti assomiglianza assomiglianza assomiglianza muori assomiglianza
assomiglianza assomiglianza confiscati assomiglianza 740 assomiglianza

Target sentence: e la parola di dio è certamente una di queste.
Predicted sentence: reali consentissero assomiglianza milena assomiglianza
buddhisti assomiglianza assomiglianza assomiglianza outright assomiglianza
assomiglianza assomiglianza confiscati assomiglianza confiscati assomiglianza

Target sentence: “e noi (angeli) non discendiamo se non attraverso il comando del
vostro signore.”
Predicted sentence: 2008/115 assomiglianza assomiglianza buddhisti assomiglianza
buddhisti assomiglianza assomiglianza assomiglianza muori assomiglianza
assomiglianza assomiglianza d’istruzioni assomiglianza d’istruzioni

WordPiece level
Target sentence: leggi del tuo signore che è generosissimo.
Predicted sentence: ##v - 2003 2003f / / frutto,,,
Target sentence: leggi, ché il tuo signore è il generosissimo,
Predicted sentence: ##v -f figlio aiuto erenza =
Target sentence: e la parola di dio è certamente una di queste.
Predicted sentence: cas00ttore smart una har etta,
Target sentence: “e noi (angeli) non discendiamo se non attraverso il comando
del vostro signore.”
Predicted sentence: i %mpo ) ) * ven bersateri politica ulti inoltre ) )
p p / * /
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